Ulaba oberhọmwan Kevbe Ulaba obiyeọmwan

 

Ulaba oberhọmwan Kevbe Ulaba obiyeọmwan

(Positive numbers and negative numbers)

Illustrated by Uwagboe Ogieva @ https://edonaze.blogspot.com


Ulaba obiyeọmwan

Omuhen

Ulaba oberhọmwan

-5

-4

-3

-2

-1

0

1

2

3

4

5

Isen

ẹirrọ

Enen

ẹirrọ

Eha

ẹirrọ

Eva

ẹirrọ

Ọkpa

ẹirrọ


ihori

Ọkpa

Eva

Eha

Enen

Isen

Negative numbers

origin

Positive numbers


Ulaba oberhọmwan rẹ ulaba ohoro n a ka uhun ihori (0).


Usun avbe ulaba oberhọmwan rẹ: ọkpa (1), eva (2), eha (3), enen (4), isen (5).


[number counting above zero (0) are positive numbers]

Ulaba obiyeọmwan rẹ ulaba ohoro n a ka otot ihori (0) ra Avbe ulaba nrre otot ihori (0).


Usun avbe ulaba obiyeọmwan rẹ: ọkpa ẹirrọ (-1), eva ẹirrọ (-2), eha ẹirrọ (-3), enen ẹirrọ (-4), isen ẹirrọ (-5)


[number counting bellow zero (0) are negative numbers]


Ena yẹẹ ama ukamwen kha: - (meaning of mathematic signs)

kevbe

=

and

+

igbe kevbe enen

10 and 4

vbe / vb

=

in / of

x

ehan vbe owr

6 x 11

rẹ / re

=

equal to

=

Vbe rhiema

=

ugue

=

brackets

()

ugue iyeva debae iweha

(40 +13)

ihe / vbe

=

of, in

x

enen ihe eha

4 of 3

afian

=

divide

/, ÷

gban fianre eha

30/3

evbihe (noun)

=

multiplication

x

Ena ka baa

x

vbihe (verb)

=

multiply by / times

x

Isen vbihe iyisen

5 x 100

debae

=

addition

+

Iwenen debae eva

14 + 2

ẹirrọ

=

subtraction

-

Eha yan ugie ẹirrọ vbe ekigbesiyeha

50 - 23

enamamien ra enamaren

=

not found or unknown

z

ẹirrọ vbe ihinron

eha debae enamaren

7 - z

3 + z



Illustrated by Uwagboe Ogieva @ https://edonaze.blogspot.com




Uvien ilele na lo ya kẹẹ ukamwen (rules to follow when doing maths operations)


U

I

A

E

D

Ugue ()

Ihe / vbe of, in

Afian /, ÷

Evbihe x

Debae +

Ẹirrọ -

Bracket

Of

Division

Multiplication

Addition

Subtraction



Tẹẹ a kẹẹ obiymwan luẹẹ ama ukamwen na ghẹẹ oberhmwan

(Use these mathematical operational signs from left to right)


Vbe igiemwi:

(a) isen vbihe eva ẹirrọ vbe ihinron debae iweva (7 + 12) - (5 x 2)

(b) ẹirrọ vbe ihinron debae enen debae isen vbihe eva (7+4) -z ) + (5 x 2)


(a)

(7 + 12) - (5 x 2) a ka rhuẹ ukamwen ugue okaro nọmwen evbihe

(7 + 12) - 10 ukamwen ugue nogieva nomwen debae

19 – 10 ukamwen ẹirrọ

9 vbe ọ rhiema


(b)

(7+4) - z ) + (5 x 2) a ka rhuẹ ukamwen ugue okaro nọmwen evbihe

(7+4) - z ) + 10 ukamwen ugue nogieva nomwen debae

11 - z + 10 ukamwen debae

11 + 10 = z ukamwen afiwerhi na ya gualọ enamaren (z)

21 = z


Oba Ovonramen Nogbaisi

Of Great Benin Kingdom

West African






















* eva ẹirrọ vbẹ isen (+5-2)= 3 (eha)

* isen debae eva ẹirrọ (-2+5)

* debae isen kevbe eva ẹirrọ (+5-2)


* isen ẹirrọ vbẹ eva (+2-5) = -3 (eha ẹirrọ)

* debae eva kevbe isen ẹirrọ (-5+2)

* eva debae kevbe isen ẹirrọ (+2-5)


* ẹirrọ vbẹ isen debae eva

( 5 – z + 2 )


* ẹirrọ vbẹ isen debae ẹirrọ vbe eva

(5- z + 2 - z )


* eva ẹirrọ debae isen ẹirrọ (-5 + -2)

* isen ẹirrọ debae eva ẹirrọ (-5 + -2) = -7

* isen ẹirrọ kevbe eva ẹirrọ (-5 -2) = -7



debae ẹirrọ = ẹirrọ (+ -)

debae debae = debae (+ +)

ẹirrọ debae = ẹirrọ (- +)

ẹirrọ kevbe ẹirrọ = ẹirrọ (- -)


ẹirrọ debae ẹirrọ = ẹirrọ (- + -)

ẹirrọ debae ẹirrọ = ẹirrọ (- - -)


debae vbihe ẹirrọ = ẹirrọ (+ x -)

ẹirrọ vbihe debae = ẹirrọ (- x +)


debae fian ẹirrọ = ẹirrọ (+ / -)

ẹirrọ fian debae = ẹirrọ (- / +)


ẹirrọ re (=) debae (- = +) gha fi werhi

debae re (=) ẹirrọ (+ = -) gha fi werhi



debae gha gberha vbẹ obiyọmwan ghẹẹ oberhọmwan khien ẹirrọ (+ = -)


ẹirrọ gha gberha vbẹ obiyọmwan ghẹẹ oberhọmwan khien debae (- = +)


debae gha gberha vbẹ oberhọmwan ghẹẹ obiyọmwan khien ẹirrọ (- = +)


ẹirrọ gha gberha vbẹ oberhọmwan ghẹẹ obiyọmwan khien debae (- = +)



evbihe gha gberha vbẹ obiyọmwan ghẹẹ oberhọmwan ọkhien afian ( x = /)


afian gha gberha vbẹ obiyọmwan ghẹẹ oberhọmwan ọkhien evbihe ( / = x)


evbihe gha gberha vbẹ oberhọmwan ghẹẹ obiyọmwan ọkhien afian ( / = x)


afian gha gberha vbẹ oberhọmwan ghẹẹ obiyọmwan ọkhien evbihe ( x = /)


Alughaen rhẹẹ (a) ẹirrọ vbe erenren {8 - z} vbe (b) erenren ẹirrọ {-8}


(a) rhiema wr tẹẹ a rhi ulaba ra emwin hien uw erenren rre. Enamaren lahien uw erenren rre. 8 - z


(b) rhiema wr tẹẹ a rhi erenren hien uw enamaren rre. Erenren i ghi rrẹẹ uw ulaba ra a emwin na ma ren. Z – 8



Illustrated by Uwagboe Ogieva @ https://edonaze.blogspot.com






Etmomita

Etmomta a ya ghẹẹ inu ọýon egbe omwan khin. Avbe Edokita kevbe avbe enosi eso lo ere vbe owaisimwiegbe debae ekemensti eso


(Themometer is use to check amount of temperature the body have. Some doctors and nurses use it in hospitals and chemist )

E tmomta




ýon


wowua


ton


tempareture


temperature bellow

temperature above





Vbe n wowua s


Vbe n ton s

-5º

-4º

-3º

-2º

-1º

wowua


ton


* Inu ulaba ọýon gha gberha ulaba ihori ghẹẹ obiyọmwan, ọ ghae ọýon n ọwowua

(when temperature goes bellow zero, its called temperature bellow zero )


* ulaba ọýon gha gberha ihori ghẹẹ oberhọmwan ọ ghae ọýon n ọton

(when temperature goes above zero, its called temperature above zero)


Sokpan oýon n ọ khke n emwanagbon gha mwen ọr ihinron yan ọgban (37°C) ton kevbe erenren yaen ekigbesiyisen (98ºF)

(however, normal body temperature is generally accepted as 98°F (37°C))














mruyi yẹẹ etmomita ya

ghẹẹ oýon egbe re vb owa


ọyon sẹ

ọwowua sẹ

ọton sẹ

amount of temperature

amount of low temperature bellow zero

amount of high temperature above zero


Illustrated by Uwagboe Ogieva @ https://edonaze.blogspot.com

Comments

Iwewe nẹ ewman ghee sẹẹ

Iruemwin ibiẹka

Ulaba (1 - 20,000)

Ukamwen (Mathematics)

Emwiokọ vbe emwin ukoni

Ihevbihe

Ikemwin

Ẹgbẹ vbẹ Ẹdo

Ukiuki

Elẹta Na Gben

Debae vbẹ Ukamwen